If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+17x+6=0
a = 2; b = 17; c = +6;
Δ = b2-4ac
Δ = 172-4·2·6
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{241}}{2*2}=\frac{-17-\sqrt{241}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{241}}{2*2}=\frac{-17+\sqrt{241}}{4} $
| 2x/5=2x/3-4 | | 9d+8=-19 | | 186=119-v | | 10b^2-49b+18=0 | | 134=221-x | | 9v^2+15v+4=0 | | 6x+2=-72 | | 8(15)=10x | | 400x-0.51=800x+0.55 | | -5(-4v+4)-6v=4(v-8)-4 | | (x)/(10)=(x)/(11)-4 | | 500x-0.51=+0.99 | | -3x2+48=18 | | (3x-21)^2=-45 | | x+61+x+x+51+80=180 | | 4u=26 | | 2=m+17 | | 12t+6=18 | | x^2+5-8x=0 | | -6(5p+3)-34=2(2p+8) | | (x-3)/(4)=(5)/(14)-(x+5)/(7) | | -68+7y+8=3(4y-2)-9 | | 7/8f+8/5f-9/5=12 | | 5x^2-29x+20=8x+6 | | 8x3+2=50 | | 3/5(x+3)=12 | | -x+4=-5+x7 | | 6x/(x+24)=2 | | 8x-2+2=50 | | 8xx-4+2=50 | | -x+4=-5x+7 | | 8x-4+2=50 |